Climate-driven changes in the composition of New World plant communities (2024)

References

  1. Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).

    CAS Google Scholar

  2. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS Google Scholar

  3. Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).

    Google Scholar

  4. Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).

    CAS Google Scholar

  5. Jump, A. S., Huang, T. J. & Chou, C. H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).

    Google Scholar

  6. Angelo, C. L. & Daehler, C. C. Upward expansion of fire‐adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    Google Scholar

  7. Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    CAS Google Scholar

  8. Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    Google Scholar

  9. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS Google Scholar

  10. Moret, P., Muriel, P., Jaramillo, R. & Dangles, O. Humboldt’s tableau physique revisited. Proc. Natl Acad. Sci. USA 116, 12889–12894 (2019).

    CAS Google Scholar

  11. Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar

  12. Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    CAS Google Scholar

  13. Feeley, K. J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Change Biol. 18, 1335–1341 (2012).

    Google Scholar

  14. Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

    Google Scholar

  15. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Google Scholar

  16. Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    CAS Google Scholar

  17. Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).

    CAS Google Scholar

  18. Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA 116, 587–592 (2019).

    CAS Google Scholar

  19. Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS Google Scholar

  20. Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

    Google Scholar

  21. Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).

    Google Scholar

  22. Duque, A., Stevenson, P. & Feeley, K. J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl Acad. Sci. USA 112, 10744–10749 (2015).

    CAS Google Scholar

  23. Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    CAS Google Scholar

  24. Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R. & Clark, D. B. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob. Change Biol. 19, 3472–3480 (2013).

    Google Scholar

  25. Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Google Scholar

  26. Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Google Scholar

  27. Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).

    Google Scholar

  28. Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Google Scholar

  29. Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024 (2018).

    Google Scholar

  30. Strzepek, K., Yohe, G., Neumann, J. & Boehlert, B. Characterizing changes in drought risk for the United States from climate change. Environ. Res. Lett. 5, 044012 (2010).

    Google Scholar

  31. Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

    Google Scholar

  32. Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    CAS Google Scholar

  33. Conradi, T., Van Meerbeek, K., Ordonez, A. & Svenning, J. C. Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecol. Lett. 23, 800–810 (2020).

  34. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Google Scholar

  35. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar

  36. Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Google Scholar

  37. Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).

    Google Scholar

  38. DeWalt, S. J., Bourdy, G., de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of Northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).

    Google Scholar

  39. Enquist, B. & Boyle, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. 4, 288 (2012).

    Google Scholar

  40. Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at https://peerj.com/preprints/2615/ (2016).

  41. Fegraus, E. Tropical Ecology Assessment and Monitoring Network (TEAM Network). Biodivers. Ecol. 4, 287 (2012).

    Google Scholar

  42. Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar

  43. Peet, R. K. et al. Vegetation-plot database of the Carolina Vegetation Survey. Biodivers. Ecol. 4, 243–253 (2012).

    Google Scholar

  44. Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).

    Google Scholar

  45. Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    Google Scholar

  46. König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLoS Biol. 17, e3000183 (2019).

    Google Scholar

  47. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Google Scholar

  48. Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).

    Google Scholar

  49. Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional changes in the species composition of a tropical forest. Ecology 92, 871–882 (2011).

    Google Scholar

  50. Gosselin, F. Putting floristic thermophilization in forests into a conservation biology perspective: beyond mean trait approaches. Ann. For. Sci. 73, 215–218 (2016).

    Google Scholar

  51. De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Google Scholar

  52. Stevens, J. T., Safford, H. D., Harrison, S. & Latimer, A. M. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263 (2015).

    Google Scholar

  53. Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004).

    CAS Google Scholar

  54. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  55. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Google Scholar

  56. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar

Download references

Climate-driven changes in the composition of New World plant communities (2024)
Top Articles
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 5918

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.